Skip to content

Norway

Permafrost

Indicator of global warming

The permafrost regions occupy approximately 24% of the terrestrial surface of the Northern Hemisphere (9). Permafrost is also extensive in such mid-latitude mountain ranges as the Rockies, Andes, Alps, and Himalayas. Two classes of frozen ground are generally distinguished: seasonally frozen ground, which freezes and thaws on an annual basis, and perennially frozen ground (permafrost), defined as any subsurface material that remains at or below 0ºC continuously for at least two consecutive years (10).


Read more

Permafrost degradation and ground settlement under 2 °C global warming

Global warming of 2°C above preindustrial levels has been considered to be the threshold that should not be exceeded to avoid dangerous interference with the climate system. What will a 2°C rise of global mean temperature lead to with respect to the degradation of permafrost, covering 1/4 of the Northern Hemisphere? This was studied by estimating permafrost soil temperature increase under 2°C global warming with ten climate models (GCMs), and quantifying the resulting thaw and settlement of the soil (26).


Read more

Cause of global warming - The permafrost carbon feedback 

Permafrost plays three important roles in the context of climatic change (14):

  • as a record keeper by functioning as a temperature archive,
  • as a translator of climate change through subsidence and related impacts, and
  • as a facilitator of further change through its impact on the global carbon cycle.

If organic material is present in the newly thawed layer, it again becomes subject to decomposition by soil microbes, ultimately releasing CO2 and CH4 to the atmosphere. CH4 (methane) is 27 times more effective at absorbing thermal radiation than CO2. Release of large quantities of CO2 and CH4 to the atmosphere would create a positive feedback mechanism that can amplify regional and global warming (10).


Read more

Vulnerabilities – Damages due to permafrost thawing

The thawing of the permafrost in the Arctic is causing damage to the infrastructure and buildings of the Arctic states. According to model projections, the costs of this damage will be $182 billion for all Arctic states combined by mid-century, under a moderate scenario of climate change. Under a high-end scenario of climate change the costs may rise to $276 billion by mid-century. Russia is expected to have the highest burden of costs, ranging from $115 to $169 billion depending on the scenario. For Scandinavia and Iceland, the estimated costs are $36.4 billion (moderate scenario) to $53.9 billion (high-end), while the range for North America is $30.4 - $53.1 billion. These are the mean values for the estimates; the uncertainty range of these costs is tens of percent (32).


Read more

Vulnerabilities - Lowland permafrost

In northern Europe, lowland permafrost will eventually disappear (1), and it will become necessary to factor in the dissipation and eventual disappearance of permafrost in infrastructure planning (2) and building techniques (3).

In 2012 the IPCC concluded that it is likely that there has been warming of permafrost in recent decades. There is high confidence that permafrost temperatures will continue to increase, and that there will be increases in active layer thickness and reductions in the area of permafrost in the Arctic and subarctic (22).


Read more

Vulnerabilities - Mountain permafrost

On slopes, particularly in mountainous regions, thawing of ice-rich, near-surface permafrost layers can create mechanical discontinuities in the substrate, leading to active-layer detachment slides and retrogressive thaw slumps (17).


Read more

Vulnerabilities - Palsa mires

Palsa mires, which contain peat with permanently frozen ice, are located at the outer margin of the permafrost zone and are expected to undergo rapid changes under global warming. These changes are expected to have a significant influence on the biodiversity of sub-arctic mires and could also potentially affect the regional carbon budget (8).

The surface subsidence of palsa complexes measured in northern Sweden is evidence of substantial permafrost degradation in many palsa areas across northern Sweden and, therefore, likely also across northern Fennoscandia (33). It seems that climate warming has been impacting permafrost in Fennoscandia at least since the 1920s (34).


Read more

Adaptation strategies

During new construction, if ice-rich permafrost cannot be avoided, it can be addressed with proper design and construction techniques. Methods include digging out the permafrost if it is relatively shallow and thin, raising the structure on piles, or otherwise assuring that the substrate remains frozen through active or passive refrigeration (10).

The oil and gas industry has much experience in working in harsh conditions and there are many examples of innovative technical solutions to adapt to challenging environments. For example, Alaska faces similar concerns to Arctic and Siberian Russia but has demonstrated increased resilience to changing climate (21):

  • Construction standards have been adapted to reflect changing conditions and to reduce the vulnerability of infrastructure to melting permafrost, e.g. deeper pilings are used, air is allowed to circulate beneath buildings, thicker insulation is employed, and facilities are located on gravel pads or other insulated materials. Buildings and infrastructure are generally lighter weight and subject to regular repair and maintenance programs.
  • The Trans‐Alaska Oil Pipeline is an example of good adaption. Here a range of measures are employed to increase resilience including elevating the pipeline above ground level in areas of excess ice; using vertical supports with heat pipes to cool permafrost in winter, lower the mean ground temperature and prevent thaw in summer; and burying sections of the pipeline with thick insulation and refrigeration.

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Norway.

  1. Haeberli and Burns (2002), in: Alcamo et al. (2007)
  2. Nelson (2003), in: Alcamo et al. (2007)
  3. Mazhitova et al. (2004), in: Alcamo et al. (2007)
  4. ACIA (2004)
  5. Alcamo et al. (2007)
  6. Commission of the European Communities (2007)
  7. Harris et al. (2003)
  8. Fronzek and Carter (2009)
  9. Brown et al. (1997); Zhang et al. (1999, 2003), all in: U.S. Arctic Research Commission (2003)
  10. U.S. Arctic Research Commission (2003)
  11. Washburn (1980), in: U.S. Arctic Research Commission (2003)
  12. Berger and Lams (1996), in: U.S. Arctic Research Commission (2003)
  13. Hansen et al. (1998); Morison et al. (2000); Serreze et al. (2000); Smith et al. (2002), all in: U.S. Arctic Research Commission (2003)
  14. Nelson et al. (1993); Anisimov et al. (2001), both in: U.S. Arctic Research Commission (2003)
  15. Jorgenson et al. (2001); Instanes (2003), both in: U.S. Arctic Research Commission (2003)
  16. Nelson et al. (2001, 2002), in: U.S. Arctic Research Commission (2003)
  17. Lewkowicz (1992); French (1996), both in: U.S. Arctic Research Commission (2003)
  18. Brown et al. (2003), in: U.S. Arctic Research Commission (2003)
  19. Walker (2001), in: U.S. Arctic Research Commission (2003)
  20. Callaway et al. (1999), in: U.S. Arctic Research Commission (2003)
  21. US Arctic Research Commission (2003), in: Ebinger et al. (2008)
  22. IPCC (2012)
  23. Schuur et al. (2015)
  24. IPCC (2013), in: Schuur et al. (2015)
  25. Zimov et al. (2006); Tarnocai et al. (2009), both in: Schuur et al. (2015)
  26. Guo and Wang (2017)
  27. Guo et al. (2012); Lan et al. (2015); Liljedahl et al. (2016), all in: Guo and Wang (2017)
  28. Yang et al. (2010, 2014); Guo et al. (2011a, b); Li and Chen (2013); Yi et al. (2014); Qin et al. (2014), all in: Guo and Wang (2017)
  29. Guo and Sun (2015), in: Guo and Wang (2017)
  30. Schuur et al. (2009, 2015); Koven et al. (2011); Burke et al. (2013), all in: Guo and Wang (2017)
  31. Hartmann et al. (2013), in: Guo and Wang (2017)
  32. Streletskiy et al. (2023)
  33. Valman et al. (2024)
  34. Isaksen et al. (2007), in: Valman et al. (2024)
  35. Makopoulou et al. (2024)

Share this article: