Skip to content

Montenegro

Forestry and Peatlands

Forestry in Montenegro in numbers

Forests cover 45% of the total national territory of Montenegro (30).

State owned forests and forest land make up 67% of the total surface, while remaining 33% are privately owned. About 56% of the land is managed with a single species type of forest (in either conifers or deciduous trees), while the remainder consists of various mixed species. The main deciduous forest types are beech and oak; the major coniferous forest types are spruce-fir, while the mixed stands are composed of beech, oak and other species, along with fir and spruce (31).

Vulnerabilities Montenegro

Among all European regions, the Mediterranean appears most vulnerable to global change. Multiple potential impacts are related primarily to increased temperatures and reduced precipitation. The impacts included water shortages, increased risk of forest fires, northward shifts in the distribution of typical tree species, and losses of agricultural potential. Mountain regions also seemed vulnerable because of a rise in the elevation of snow cover and altered river runoff regimes (1).

Data (up to 2003) show that 30% to 35% of forests in Montenegro are in various stages of degradation. It is a general conclusion that conifer forests are getting much more damaged compared to the broadleaf stands. The particularly vulnerable forests include spruce and beechin the subalpine belt, beech and fir forestsbelonging to the Dinaric vegetation zone, and sub-Mediterranean forests of oak and hornbeam. Of particular concern are high percentages of dry spruce fir forests in the area of Kolašin and of fir forests in the southwestern region of the country, which is particularly affected by drought on shallow soils (30).


Read more

Vulnerabilities - Overview

The increased vulnerability of forests (and people) with respect to climate change refers to several impacts (22,28):


Read more

Vulnerabilities – Temperate forests in Europe

Present situation

In parts of Europe with temperate forests, annual mean temperatures are below 17°C but above 6°C, and annual precipitation is at least 500 mm and there is a markedly cool winter period (2). Temperate forests are dominated by broad-leaf species with smaller amounts of evergreen broad-leaf and needle-leaf species (3). Common species include the oaks, eucalypts, acacias, beeches, pines, and birches.

Many of the major factors that influence these forests are due to human activities, including land-use and landscape fragmentation, pollution, soil nutrients and chemistry, fire suppression, alteration to herbivore populations, species loss, alien invasive species, and now climate change (4).

Forest productivity has been increasing in western Europe (5). This is thought to be from increasing CO2 in the atmosphere (6), anthropogenic nitrogen deposition (7), warming temperatures (8), and associated longer growing seasons (9).


Read more

Benefits

Globally, based on both satellite and ground-based data, climatic changes seemed to have a generally positive impact on forest productivity since the middle of the 20th century, when water was not limiting (29).

Timber production in Europe

Climate change will probably increase timber production and reduce prices for wood products in Europe. For 2000–2050 a change of timber production in Europe is expected of -4 to +5%. For 2050–2100 an increase is expected of +2 to +13% (21).

Adaptation strategies - Forest management measures in general

Near-nature forest management and a move away from monocultures toward mixed forest types, in terms of both species and age classes, are advocated. In addition, natural or imitated natural regeneration is indicated as a method of maintaining genetic diversity, and subsequently reducing vulnerability. For management against extreme disturbances, improvements in fire detection and suppression techniques are recommended, as well as methods for combating pests and diseases. It is reported that through stricter quarantine and sanitary management, the impact of insects and diseases can be minimized. The establishment of migration corridors between forest reserves may aid in the autonomous colonization and migration of species in response to climate change (26).

Adaptive management

The terms adaptation and adaptive management are often incorrectly used interchangeably. The former involves making adjustments in response to or in anticipation of climate change whereas the latter describes a management system that may be considered, in itself, to be an adaptation tactic (23). Adaptive management is a systematic process for continually improving management policies and practices by learning from the outcomes of operational programmes (24). It involves recognizing uncertainty and establishing methodologies to test hypotheses concerning those uncertainties; it uses management as a tool not only to change the system but to learn about the system (25).


Read more

Adaptation strategies - Montenegro

In addition to the general forest management measures, it is important for Montenegro to (30)

  • increase its forest area - the degree of forest cover of Montenegro of 45% is satisfactory. This level can be increased since there are considerable areas of publicly owned bare land suitable for afforestation. The priority in reforestation is given to large complexes of bare soil, as well as land areas in the vicinity of cities (urban forestry);
  • carry out the following measures to improve the condition of forests: care for and protection of existing forests; conversion of coppice forests into high forests; rehabilitation of degraded forests; substituting of failed natural regeneration in high forest; sanitary felling in forests affected;
  • increase the area of forests that are managed primarily to preserve the protective function- when creating a new basis of forest management, the following parts of the protective forests must be isolated: parts of the forest complexes in areas prone to soil erosion; trees on terrain slopes above 30°; forests in water source areas and next to flooding water courses; relict forest communities of mountain pine, maple, Macedonian pine and whitebark pine, etc;
  • improve the condition of forests on karst - progressive succession of vegetation is clearly visible and happens naturally. The process needs to be accelerated by measures of care.

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Montenegro.

  1. Schröter et al. (2005)
  2. Walter (1979), in: Fischlin (ed.) (2009)
  3. Melillo et al. (1993), in: Fischlin (ed.) (2009)
  4. Reich and Frelich (2002), in: Fischlin (ed.) (2009)
  5. Carrer and Urbinati (2006), in: Fischlin (ed.) (2009)
  6. Field et al. (2007b), in: Fischlin (ed.) (2009)
  7. Hyvönen et al. (2007); Magnani et al. (2007), both in: Fischlin (ed.) (2009)
  8. Marshall et al. (2008), in: Fischlin (ed.) (2009)
  9. Chmielewski and Rötzer (2001); Parmesan (2006), both in: Fischlin (ed.) (2009)
  10. Alcamo et al. (2007); Field et al. (2007b); Alo and Wang (2008), all in: Fischlin (ed.) (2009)
  11. Lucht et al. (2006); Scholze et al. (2006); Alo and Wang (2008), all in: Fischlin (ed.) (2009)
  12. Williams et al. (2000); Williams and Liebhold (2002); Logan and Powell (2001); Tran et al. (2007); Friedenberg et al. (2008), all in: Fischlin (ed.) (2009)
  13. Fischlin (ed.) (2009)
  14. Iverson and Prasad (2001); Ohlemüller et al. (2006); Fischlin et al. (2007); Golubyatnikov and Denisenko (2007), all in: Fischlin (ed.) (2009)
  15. Perry et al. (2008), in: Fischlin (ed.) (2009)
  16. Liski et al. (2002), in: Fischlin (ed.) (2009)
  17. Piao et al. (2008), in: Fischlin (ed.) (2009)
  18. Morales et al. (2007), in: Fischlin (ed.) (2009)
  19. Christensen et al. (2007); Fischlin et al. (2007); Meehl et al. (2007); Schneider et al. (2007), all in: Fischlin (ed.) (2009)
  20. Hanson and Weltzin (2000), in: Fischlin (ed.) (2009)
  21. Karjalainen et al. (2003); Nabuurs et al. (2002); Perez-Garcia et al. (2002); Sohngen et al. (2001), in: Osman-Elasha and Parrotta (2009)
  22. Innes (ed.) (2009)
  23. Ogden and Innes (2007), in: Innes (ed.) (2009)
  24. BCMOF (2006a), in: Innes (ed.) (2009)
  25. Holling (1978); Lee (1993, 2001), all in: Innes (ed.) (2009)
  26. Roberts (ed.) (2009)
  27. Keskitalo (2008), in: Roberts (ed.) (2009)
  28. Kirilenko and Sedjo (2007)
  29. Boisvenue et al. (2006)
  30. Ministry for Spatial Planning and Environment of the Republic of Montenegro (2010)
  31. Callaway et al. (2010)
  32. Shugart et al. (2003), in: Callaway et al. (2010)

Share this article: