Iceland
Health
Vulnerabilities Iceland
The impact that climate change could have on human health is likely to be less in Iceland than in many other countries. Considering the low mean annual temperature in Iceland, the likelihood of heat events having large impacts on public health is low. Fewer colder days associated with winter warming may in fact have several positive health impacts (1).
Most European countries have between 5 and 30 % higher death rates in winter than in summer. Winter‑related mortality in many European populations has declined since the 1950s (2). Cold days, cold nights and frost days have become rarer, but explain only a small part of this reduction: improved home heating, better general health and improved prevention and treatment of winter infections have played a more significant role (3).
Adaptation strategies - General - Heatwaves
The outcomes from the two European heat waves of 2003 and 2006 have been summarized by the IPCC (4) and are summarized below. They include public health approaches to reducing exposure, assessing heat mortality, communication and education, and adapting the urban infrastructure.
1. Public health approaches to reducing exposure
A common public health approach to reducing exposure is the Heat Warning System (HWS) or Heat Action Response System. The four components of the latter include an alert protocol, community response plan, communication plan, and evaluation plan (5). The HWS is represented by the multiple dimensions of the EuroHeat plan, such as a lead agency to coordinate the alert, an alert system, an information outreach plan, long-term infrastructural planning, and preparedness actions for the health care system (6).
The European Network of Meteorological Services has created Meteoalarm as a way to coordinate warnings and to differentiate them across regions (7). There are a range of approaches used to trigger alerts and a range of response measures implemented once an alert has been triggered. In some cases, departments of emergency management lead the endeavor, while in others public health-related agencies are most responsible (8).
2. Assessing heat mortality
Assessing excess mortality is the most widely used means of assessing the health impact of heat-related extreme events.
3. Communication and education
One particularly difficult aspect of heat preparedness is communicating risk. In many locations populations are unaware of their risk and heat wave warning systems go largely unheeded (9). Some evidence has even shown that top-down educational messages do not result in appropriate resultant actions (10).
More generally, research shows that communication about heat preparedness centered on engaging with communities results in increased awareness compared with top-down messages (11).
4. Adapting the urban infrastructure
Several types of infrastructural measures can be taken to prevent negative outcomes of heat-related extreme events. Models suggest that significant reductions in heat-related illness would result from land use modifications that increase albedo, proportion of vegetative cover, thermal conductivity, and emissivity in urban areas (12). Reducing energy consumption in buildings can improve resilience, since localized systems are less dependent on vulnerable energy infrastructure. In addition, by better insulating residential dwellings, people would suffer less effect from heat hazards. Financial incentives have been tested in some countries as a means to increase energy efficiency by supporting those who are insulating their homes. Urban greening can also reduce temperatures, protecting local populations and reducing energy demands (13).
References
The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Iceland.
- Ministry for the Environment of Iceland (2010)
- Kunst et al. (1991); Lerchl (1998); Carson et al. (2006), in: EEA, JRC and WHO (2008)
- Carson et al. (2006), in: EEA, JRC and WHO (2008)
- IPCC (2012)
- Health Canada (2010), in: IPCC (2012)
- WHO (2007), in: IPCC (2012)
- Bartzokas et al. (2010), in: IPCC (2012)
- McCormick (2010b), in: IPCC (2012)
- Luber and McGeehin (2008), in: IPCC (2012)
- Semenza et al. (2008)), in: IPCC (2012)
- Smoyer-Tomic and Rainham (2001), in: IPCC (2012)
- Yip et al. (2008); Silva et al. (2010), both in: IPCC (2012)
- Akbari et al. (2001), in: IPCC (2012)