Slovenia
Coastal floods
Global sea level rise
Observations
For the latest results: see Europe Coastal floods
Projections
For the latest results: see Europe Coastal floods
Extreme water levels - Global trends
More recent studies provide additional evidence that trends in extreme coastal high water across the globe reflect the increases in mean sea level (5), suggesting that mean sea level rise rather than changes in storminess are largely contributing to this increase (although data are sparse in many regions and this lowers the confidence in this assessment). It is therefore considered likely that sea level rise has led to a change in extreme coastal high water levels. It is likely that there has been an anthropogenic influence on increasing extreme coastal high water levels via mean sea level contributions. While changes in storminess may contribute to changes in sea level extremes, the limited geographical coverage of studies to date and the uncertainties associated with storminess changes overall mean that a general assessment of the effects of storminess changes on storm surge is not possible at this time.
On the basis of studies of observed trends in extreme coastal high water levels it is very likely that mean sea level rise will contribute to upward trends in the future.
Extreme waves - Future trends along the Mediterranean coast
Recent regional studies provide evidence for projected future declines in extreme wave height in the Mediterranean sea (6). However, considerable variation in projections can arise from the different climate models and scenarios used to force wave models, which lowers the confidence in the projections (7).
Vulnerabilities
The regions at greatest risk of the consequences of sea level rise are parts of the cultural and historical town of Piran and the saltpan regions, while difficulties may also occur in part of the port infrastructure and in the marinas (1).
Economic impacts of sea level rise for Europe
The direct and indirect costs of sea level rise for Europe have been modelled for a range of sea level rise scenarios for the 2020s and 2080s (8). The results show:
- First, sea-level rise has negative economic effects but these effects are not particularly dramatic. In absolute terms, optimal coastal defence can be extremely costly. However, on an annual basis, and compared to national GDP, these costs are quite small. On a relative basis, the highest value is represented by the 0.2% of GDP in Estonia in 2085.
- Second, the impact of sea-level rise is not confined to the coastal zone and sea-level rise indeed affects landlocked countries as well. Because of international trade, countries that have relatively small direct impacts of sea-level rise, and even landlocked countries such as Austria, gain in competitiveness.
- Third, adaptation is crucial to keep the negative impacts of sea-level rise at an acceptable level. This may well imply that some European countries will need to adopt a coastal zone management policy that is more integrated and more forward looking than is currently the case.
Adaptation strategies - The costs of adaptation
Both the risk of sea-level rise and the costs of adaptation to sea-level rise in the European Union have been estimated for 2100 compared with 2000 (9). Model calculations have been made based on the IPCC SRES A2 and B1 scenarios. In these projections both flooding due to sea-level rise near the coast and the backwater effect of sea level rise on the rivers have been included. Salinity intrusion into coastal aquifers has not been included, only salt water intrusion into the rivers. Changes in storm frequency and intensity have not been considered; the present storm surge characteristics are simply displaced upwards with the rising sea level following 20th century observations. The assessment is based on national estimates of GDP.
Read moreReferences
The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Slovenia.
- Republic of Slovenia, Ministry of the Environment, Spatial Planning and Energy (2002)
- Bindoff et al. (2007), in: IPCC (2012)
- Church and White (2011), in: IPCC (2012)
- Velicogna (2009); Rignot et al. (2011); Sørensen et al. (2011), all in: IPCC (2012)
- Marcos et al. (2009); Haigh et al. (2010); Menendez and Woodworth (2010), all in: IPCC (2012)
- Lionello et al. (2008), in: IPCC (2012)
- IPCC (2012)
- Bosello et al. (2012)
- Hinkel et al. (2010)
- Cazenave et al. (2014)
- IPCC (2014)
- Watson et al. (2015)
- Yi et al. (2015)
- Church et al. (2013), in: Watson et al. (2015)
- Shepherd et al. (2012), in: Watson et al. (2015)
- Church et al. (2013), in: Watson et al. (2015)