Skip to content

Latvia

Agriculture and Horticulture

Agriculture and horticulture in numbers

Europe

Agriculture accounts for only a small part of gross domestic production (GDP) in Europe, and it is considered that the overall vulnerability of the European economy to changes that affect agriculture is low (2). However, agriculture is much more important in terms of area occupied (farmland and forest land cover approximately 90 % of the EU's land surface), and rural population and income (3).

Latvia

In 2003 45% of the land was covered by forests, 38% – by agricultural lands, 4% – by water, 4% – by marshes, 2% was taken up by roads, 2% – by shrubs and 4% – other (1).

Although the GDP share of the agriculture sector is not big (2.4% in 2003), its significance in the national economy is high. In 2003, 104 thousand people or 10.3% of the total number of employed in the country were employed in this sector, although the number is gradually decreasing (1).

Traditionally, the leading agricultural industries are livestock breeding and crop farming. In 2003, the final agricultural produce in the livestock breeding accounted for 46% (including milk – 21%, pork – 12%, egg – 6%), crop farming – 48% (including grain – 19%, potatoes – 10%, vegetables – 7%), and other agricultural produce – 6% of the total output (1).

Benefits

Higher CO2 concentrations

In the short term, a rising concentration of CO2 can stimulate photosynthesis, leading to increases in biomass production in C3 crops such as wheat, barley, rye, potato and rice (15). The response is much smaller in C4 crops such as maize. These benefits will be particularly pronounced in northern Europe. As climate change advances, however, its negative impacts, such as more frequent winter floods, are likely to outweigh these benefits (10,11).

Productivity improvements in northern countries could reach 40-50% by the 2080s (12).

The impact of climate change on two grass species (timothy and ryegrass) was assessed at several locations in Northern Europe (Iceland, Scandinavia, Baltic countries) in a near-future scenario (2040–2065) compared with the baseline period 1960–1990. This was done for simulations based on a large number of global climate models and the IPCC SRES A1B emission scenario. According to these results potential grass yield will increase throughout the study area, mainly as a result of increased growing temperatures: 14% for irrigated and 11% for non-irrigated conditions. Predicted yield response was largest at western locations. The growing period was predicted to start earlier in 2050 compared with the baseline period. The yield response showed a west-east geoclimatic gradient, with the largest yield responses at locations with a maritime climate in the west and the smallest at inland locations in the east. This gradient was especially evident under non-irrigated conditions due to the generally larger precipitation at the western locations (14).

Vulnerabilities Europe - Climate change not main driver

Socio-economic factors and technological developments

Climate change is only one driver among many that will shape agriculture and rural areas in future decades. Socio-economic factors and technological developments will need to be considered alongside agro-climatic changes to determine future trends in the sector (3).


From research it was concluded that socio-economic assumptions have a much greater effect on the scenario results of future changes in agricultural production and land use then the climate scenarios (4).

The European population is expected to decline by about 8% over the period from 2000 to 2030 (5).

Scenarios on future changes in agriculture largely depend on assumptions about technological development for future agricultural land use in Europe (4). It has been estimated that changes in the productivity of food crops in Europe over the period 1961–1990 were strongest related to technology development and that effects of climate change were relatively small. For the period till 2080 an increase in crop productivity for Europe has been estimated between 25% and 163%, of which between 20% and 143% is due to technological development and 5-20% is due to climate change and CO2 fertilisation. The contribution of climate change just by itself is approximately a minor 1% (6).

Care should be taken, however, in drawing firm conclusions from the apparent lack of sensitivity of agricultural land use to climate change. At the regional scale there are winners and losers (in terms of yield changes), but these tend to cancel each other out when aggregated to the whole of Europe (4).

Future changes in land use

If technology continues to progress at current rates then the area of agricultural land would need to decline substantially. Such declines will not occur if there is a correspondingly large increase in the demand for agricultural goods, or if political decisions are taken either to reduce crop productivity through policies that encourage extensification or to accept widespread overproduction (4).

Cropland and grassland areas (for the production of food and fibre) may decline by as much as 50% of current areas for some scenarios. Such declines in production areas would result in large parts of Europe becoming surplus to the requirement of food and fibre production (4). Over the shorter term (up to 2030) changes in agricultural land area may be small (7).

Although it is difficult to anticipate how this land would be used in the future, it seems that continued urban expansion, recreational areas (such as for horse riding) and forest land use would all be likely to take up at least some of the surplus. Furthermore, whilst the substitution of food production by energy production was considered in these scenarios, surplus land would provide further opportunities for the cultivation of bioenergy crops (4).

Europe is a major producer of biodiesel, accounting for 90% of the total production worldwide (8). In the Biofuels Progress Report (9), it is estimated that in 2020, the total area of arable land required for biofuel production will be between 7.6 million and 18.3 million hectares, equivalent to approximately 8% and 19% respectively of total arable land in 2005.

The agricultural area of Europe has already diminished by about 13% in the 40 years since 1960 (4).

Adaptation strategies

According to the Work Bank, the following adaptation measures hold the greatest promise for Eastern European countries, independent of climate change scenarios (13):

  • Technology and management: Conservation tillage for maintaining moisture levels; reducing fossil fuel use from field operations, and reducing CO2 emissions from the soil; use of organic matter to protect field surfaces and help preserve moisture; diversification of crops to reduce vulnerability; adoption of drought‐, flood‐, heat‐, and pest resistant cultivars; modern planting and crop‐rotation practices; use of physical barriers to protect plants and soils from erosion and storm damage; integrated pest management (IPM), in conjunction with similarly knowledge‐based weed control strategies; capacity for knowledge based farming; improved grass and legume varieties for livestock; modern fire management techniques for forests.
  • Institutional change: Support for institutions offers countries win‐win opportunities for reducing vulnerability to climate risk and promoting development. Key institutions include: hydromet centers, advisory services, irrigation directorates, agricultural research services, veterinary institutions, producer associations, water‐user associations, agro processing facilities, and financial institutions.
  • Policy: Non‐distorting pricing for water and commodities; financial incentives to adopt technological innovations; access to modern inputs; reformed farm subsidies; risk insurance; tax incentives for private investments; modern land markets; and social safety nets.

References

The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Latvia.

  1. Ministry of the Environment of the Republic of Latvia (2006)
  2. EEA (2006), in: EEA, JRC and WHO (2008)
  3. EEA, JRC and WHO (2008)
  4. Rounsevell et al. (2005)
  5. UN (2004), in: Alcamo et al. (2007)
  6. Ewert et al. (2005), in: Alcamo et al. (2007)
  7. Van Meijl et al. (2006), in: Alcamo et al. (2007)
  8. JNCC (2007), in: Anderson (ed.) (2007)
  9. European Commission (2006), in: Anderson (ed.) (2007)
  10. EEA (2004), in: Anderson (ed.) (2007)
  11. IPCC (2007), in: Anderson (ed.) (2007)
  12. Ciscar et al. (2009), in: Behrens et al. (2010)
  13. World Bank Group (2009)
  14. Hoglind et al. (2013)

Share this article: