Germany
Energy
Wind power in Germany
Wind share of total electricity consumption in Germany was 9.4% by the end of 2010. Overall in the EU, in a normal wind year, installed wind capacity at the end of 2010 meets 5.3% of the EU’s electricity needs (10).
Vulnerabilities Germany
Electricity prices in Germany may increase by 1% for every degree that water temperatures rise above 25°C and by 1% for every 1% that river levels fall (15). An equivalent of the 2006 German heat wave can result in an increase in electricity prices of 11% or even 24% (affected plants running at minimum output) and 50% (affected plants at zero output) (16).
Vulnerabilities Europe
Supply
The current key renewable energy sources in Europe are hydropower (19.8% of electricity generated) and wind. By the 2070s, hydropower potential for the whole of Europe is expected to decline by 6%, translated into a 20 to 50% decrease around the Mediterranean, a 15 to 30% increase in northern and eastern Europe and a stable hydropower pattern for western and central Europe (1,3,4). In areas with increased precipitation and runoff, dam safety may become a problem due to more frequent and intensive flooding events (5).
It has become apparent during recent heat waves and drought periods that electricity generation in thermal power plants may be affected by increases in water temperature and water scarcity. In the case of higher water temperatures the discharge of warm cooling water into the river may be restricted if limit values for temperature are exceeded. Electricity production has already had to be reduced in various locations in Europe during very warm summers (e.g. 2003, 2005 and 2006) (5,8).
Extreme heat waves can pose a serious threat to uninterrupted electricity supplies, mainly because cooling air may be too warm and cooling water may be both scarce and too warm (9).
Climate change will impact thermoelectric power production in Europe through a combination of increased water temperatures and reduced river flow, especially during summer. In particular, thermoelectric power plants in southern and south-eastern Europe will be affected by climate change. Using a physically based hydrological and water temperature modelling framework in combination with an electricity production model, a summer average decrease in capacity of power plants of 6.3–19% in Europe was shown for 2031–2060 compared with 1971-2000, depending on cooling system type and climate scenario (SRES B1 and A2) (14).
Overall, a decrease in low flows (10th percentile of daily distribution) for Europe (except Scandinavia) is projected with an average decrease of 13-15% for 2031–2060 and 16-23% for 2071-2100,compared with 1971-2000. Increases in mean summer (21 June - 20 September) water temperatures are projected of 0.8-1.0°C for 2031–2060 and 1.4-2.3°C for 2071-2100, compared with 1971-2000. Projected water temperature increases are highest in the south-western and south-eastern parts of Europe (14).
By the 22nd century, land area devoted to biofuels may increase by a factor of two to three in all parts of Europe (2).
Demand
Gradual temperature-induced impacts on energy supply will probably make a relatively small contribution to the cost of energy and electricity. Acute heat waves and droughts can have a much greater, albeit short-term, impact on electricity prices (17).
It may become more challenging to meet energy demands during peak times due to more frequent heat waves and drought conditions (1). Strong distributional patterns are expected across Europe — with rising cooling (electricity) demand in summer in southern Europe, compared with reduced heating (energy) demand in winter in northern Europe (7).
Climate change impacts on electricity markets in Western Europe
The expected climate changes in the 21st century are likely to have a small impact on electricity prices and production for the energy markets of Western Europe. This has been estimated by modelling three climatic effects (13):
- changes in demand for electricity due to changes in the need for heating and cooling,
- changes in supply of hydropower due to changes in precipitation and temperature, and
- changes in thermal power supply due to warmer cooling water and therefore lower plant efficiency.
According to the model results each of these three partial effects changes the average electricity producer price by less than 2%, while the net effect is an increase in the average producer price of only 1%. Similarly, the partial effects on total electricity production are small, and the net effect is a decrease of 4%.
The greatest effects of climate change are found for those Nordic countries with a large market share for reservoir hydro. In these countries total annual production increases by 8%, reflecting an expected increase in inflow of water. A substantial part of the increase in Nordic production is exported; climate change doubles net exports of electricity from the Nordic countries, while the optimal reservoir capacity is radically reduced (13).
Adaptation strategies
Decreases in water withdrawal for electricity production are likely. Many older power stations rely on once-through cooling systems, and newer plants are expected to replace many of these over the next thirty years. The newer plants usually operate with tower cooling systems, which should result in substantial reductions, of 50% or more, in water withdrawal, despite an expected near doubling of thermal electricity production in Europe between 1990 and 2030 (11).
According to the German adaptation strategy energy providers should prepare for extreme weather events (12)
- by putting a large proportion (on a European comparison) of cable sections underground to provide protection against strong winds;
- by providing emergency water connections for power stations in case cooling with river water becomes impossible due to drought;
- by setting up crisis task forces to permit a speedy response to failures in extreme weather situations.
References
The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Germany.
- Lehner et al. (2005), in: Alcamo et al. (2007)
- Metzger et al. (2004), in: Alcamo et al. (2007)
- Kirkinen et al. (2005), in: Anderson (ed.) (2007)
- Veijalainen and Vehviläinen (2006); Andréasson et al. (2006), in: Anderson (ed.) (2007)
- Anderson (ed.) (2007)
- Rothstein et al. (2006), in: Anderson (ed.) (2007)
- Alcamo et al., 2007
- EEA, JRC and WHO (2008)
- Behrens et al. (2010)
- European Wind Energy Association (2011)
- EEA (2005), in: European Commission (DG Environment) (2007)
- Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2009)
- Golombek et al. (2012)
- Van Vliet et al. (2012)
- McDermott and Nilsen (2013), in: IPCC (2014)
- Pechan and Eisenack (2013), in: IPCC (2014)
- IPCC (2014)