Cyprus
Health
Vulnerabilities Cyprus
There are no data or projections available for Cyprus regarding climate change impacts on human
health (1).
Air quality
Air quality is expected to become poorer in the Eastern Mediterranean and the Middle East. Whereas human-induced emissions in most of Europe are decreasing, they are increasing in Turkey and the Middle East, which affect ozone and particulate air pollution, leading to excess morbidity and mortality. In the northern parts of the Eastern Mediterranean and the Middle East increasing dryness will likely be associated with fire activity and consequent pollution emissions. Furthermore, this region has many large cities, including several megacities in which air quality is seriously degraded (12,13).
So far, no effect of air pollution, indicated by particles smaller than 10 μm (PM10), on mortality was found for data over the period 2007 – 2009 (14).
Heatwaves
Extended heat waves will have serious health implications (12). Mortality in Cyprus strongly increases with temperature above a high-temperature threshold at 33.7°C. The heat impact on mortality is highest on the current and next day of a severe heat event, and far less two and more days after the event (delayed effects) (14).
Adaptation strategies - Cyprus
The following adaptation measures have been recommended (1):
- Data must be collected and an inventory must be completed on vector, water and food borne diseases, and monitoring, disease control and prevention must be promoted;
- Guidelines must be developed and proper training for medical doctors (private and public sector) and the health infrastructure has to be improved;
- An early warning system should be implemented, and health and social care systems must develop contingency plans to cope with increasing numbers of patients and potential disease outbreaks;
- The implementation of measures for air quality improvement in urban areas must be enhanced;
- Air and drinking water quality must be monitored and strict controls/health inspections in food production and service industry must be applied.
Adaptation strategies - General - Heatwaves
The outcomes from the two European heat waves of 2003 and 2006 have been summarized by the IPCC (2) and are summarized below. They include public health approaches to reducing exposure, assessing heat mortality, communication and education, and adapting the urban infrastructure.
1. Public health approaches to reducing exposure
A common public health approach to reducing exposure is the Heat Warning System (HWS) or Heat Action Response System. The four components of the latter include an alert protocol, community response plan, communication plan, and evaluation plan (3). The HWS is represented by the multiple dimensions of the EuroHeat plan, such as a lead agency to coordinate the alert, an alert system, an information outreach plan, long-term infrastructural planning, and preparedness actions for the health care system (4).
The European Network of Meteorological Services has created Meteoalarm as a way to coordinate warnings and to differentiate them across regions (5). There are a range of approaches used to trigger alerts and a range of response measures implemented once an alert has been triggered. In some cases, departments of emergency management lead the endeavor, while in others public health-related agencies are most responsible (6).
2. Assessing heat mortality
Assessing excess mortality is the most widely used means of assessing the health impact of heat-related extreme events.
3. Communication and education
One particularly difficult aspect of heat preparedness is communicating risk. In many locations populations are unaware of their risk and heat wave warning systems go largely unheeded (7). Some evidence has even shown that top-down educational messages do not result in appropriate resultant actions (8).
More generally, research shows that communication about heat preparedness centered on engaging with communities results in increased awareness compared with top-down messages (9).
4. Adapting the urban infrastructure
Several types of infrastructural measures can be taken to prevent negative outcomes of heat-related extreme events. Models suggest that significant reductions in heat-related illness would result from land use modifications that increase albedo, proportion of vegetative cover, thermal conductivity, and emissivity in urban areas (10). Reducing energy consumption in buildings can improve resilience, since localized systems are less dependent on vulnerable energy infrastructure. In addition, by better insulating residential dwellings, people would suffer less effect from heat hazards. Financial incentives have been tested in some countries as a means to increase energy efficiency by supporting those who are insulating their homes. Urban greening can also reduce temperatures, protecting local populations and reducing energy demands (11).
References
The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Cyprus.
- Shoukri and Zachariadis (2012)
- IPCC (2012)
- Health Canada (2010), in: IPCC (2012)
- WHO (2007), in: IPCC (2012)
- Bartzokas et al. (2010), in: IPCC (2012)
- McCormick (2010b), in: IPCC (2012)
- Luber and McGeehin (2008), in: IPCC (2012)
- Semenza et al. (2008)), in: IPCC (2012)
- Smoyer-Tomic and Rainham (2001), in: IPCC (2012)
- Yip et al. (2008); Silva et al. (2010), both in: IPCC (2012)
- Akbari et al. (2001), in: IPCC (2012)
- Lelieveld et al. (2012)
- Lelieveld et al. (2013)
- Tsangari et al. (2016)