Belgium
Forestry and Peatlands
Forestry in numbers
In 2000, Belgian forests covered 693,100 hectares or 22.6% of national territory. The majority of these forests (78.6%) are in the Walloon Region. Deciduous and coniferous species covered 51% and 49% respectively of the area. Belgium has the second highest net annual growth increment of the countries of the European Union (after Germany). This large growth of biomass amount is due to good forest management practices and also to the age structure of tree populations. It is expected to continue for 10 to 20 years before reaching a limit (1).
Vulnerabilities - Belgium
The results show that increasing CO2 concentration in the atmosphere will accelerate forest growth. However, in the medium-term, this growth will be limited by soil fertility on the one hand and the relative drought caused by higher temperatures and precipitation changes on the other hand. Some conifers, the spruce for example, will be increasingly less suited to the climate because of the milder, rainy winters. In time, broad-leaved trees (such as beech) could also become poorly suited to the climate due to periods of drought (30).
Although the direct link with climate change has not been demonstrated, beech stands have recently been invaded by timber-boring insects, the impact of which was the destruction of more than 10% of standing volume. Climate change may favour the extension of the distribution of pests to the north or lower latitudes (30).
Contrary to the results of research in the agricultural sector, in time, the impact of droughts in forestry could be more negative (30).
Vulnerabilities - Overview
The increased vulnerability of forests (and people) with respect to climate change refers to several impacts (22,28):
- Forest cover: conversion of forests to non-woody energy plantations; accelerated deforestation and forest degradation; increased use of wood for domestic energy.
- Biodiversity: alteration of plant and animal distributions; loss of biodiversity; habitat invasions by non-native species; alteration of pollination systems; changes in plant dispersal and regeneration.
- Productivity: changes in forest growth and ecosystem biomass; changes in species/site relations; changes in ecosystem nitrogen dynamics.
- Health: increased mortality due to climate stresses; decreased health and vitality of forest ecosystems due to the cumulative impacts of multiple stressors; deteriorating health of forest-dependent peoples.
- Soils and water: changes in the seasonality and intensity of precipitation, altering the flow regimes of streams; changes in the salinity of coastal forest ecosystems; increased probability of severe droughts; increased terrain instability and soil erosion due to increased precipitation and melting of permafrost; more/earlier snow melt resulting in changes in the timing of peak flow and volume in streams. The capacity of the forest ecosystem to purify water is an important service, obviating the cost of expensive filtration plants.
- Carbon cycles: alteration of forest sinks and increased CO2 emissions from forested ecosystems due to changes in forest growth and productivity.
- Tangible benefits of forests for people: changes in tree cover; changes in socio-economic resilience; changes in availability of specific forest products (timber, non-timber wood products and fuel wood, wild foods, medicines, and other non-wood forest products).
- Intangible services provided by forests: changes in the incidence of conflicts between humans and wildlife; changes in the livelihoods of forest-dependent peoples (also a tangible benefit); changes in socio-economic resilience; changes in the cultural, religious and spiritual values associated with particular forests.
Productivity
Increasing CO2 concentration can affect tree growth through increased photosynthetic rates and through improved water-use efficiency. There will be complex interactions, however: forest growth rates may well be increased in some cases by rising levels of atmospheric CO2, but rising temperatures, higher evaporation rates and lower rainfall may lower growth rates in other cases (13).
Non-timber products
Increasingly there are concerns about the productivity of non-timber products such as medicines and foods. Relatively little information is available in the scientific literature about the sustainable management of such products, and even less is known about their vulnerability to climate change (22).
Vulnerabilities
Increasing CO2 concentration in the atmosphere will accelerate forest growth. In the medium-term, this growth will, however, be limited by soil fertility on the one hand and the relative drought caused by higher temperatures and precipitation changes on the other (1).
Vulnerabilities – Temperate forests in Europe
Present situation
In parts of Europe with temperate forests, annual mean temperatures are below 17°C but above 6°C, and annual precipitation is at least 500 mm and there is a markedly cool winter period (2). Temperate forests are dominated by broad-leaf species with smaller amounts of evergreen broad-leaf and needle-leaf species (3). Common species include the oaks, eucalypts, acacias, beeches, pines, and birches.
Many of the major factors that influence these forests are due to human activities, including land-use and landscape fragmentation, pollution, soil nutrients and chemistry, fire suppression, alteration to herbivore populations, species loss, alien invasive species, and now climate change (4).
Forest productivity has been increasing in western Europe (5). This is thought to be from increasing CO2 in the atmosphere (6), anthropogenic nitrogen deposition (7), warming temperatures (8), and associated longer growing seasons (9).
Trends
Most models predict continuing trends of modestly increasing forest productivity in Western Europe over this century (10). Projections for the time near the end of the next century generally suggest decreasing growth and a reduction in primary productivity enhancement as temperatures warm, CO2 saturation is reached for photosynthetic enhancement, and reduced summer precipitation all interact to decrease temperate zone primary productivity (11). The projected increased occurrence of pests, particularly in drought-stressed regions, also contributes to decreased long-term primary productivity in some regions of temperate forests (12).
Sensitivity to increasing air pollution loads, particularly nitrogen deposition and tropospheric ozone, will impact large areas of the northern temperate forest over the next century. In the temperate domain, air pollution is expected to interact with climate change; while the fertilization effects from nitrogen deposition are still highly uncertain, pollutants such as ozone are known to diminish primary productivity (13).
Migration
The ranges of northern temperate forests are predicted to extend into the boreal forest range in the north and upward on mountains (14). The distribution of temperate broadleaved tree species is typically limited by low winter temperatures (15). Since the latter are projected to rise more rapidly than summer temperatures in Europe and North America, temperate broad-leaved tree species may profit and invade currently boreal areas more rapidly than other temperate species.
Carbon sinks/sources
Temperate forest regions in the highly productive forests of western Europe (16) are known to be robust carbon sinks, although increased temperature may reduce this effect through loss of carbon from soils (17). Weaker carbon sinks or even carbon losses are seen for temperate forests in areas prone to periodic drought, such as southern Europe (18).
Models suggest that the greatest climate change threat to temperate forest ecosystems is reduced summer precipitation, leading to increased frequency and severity of drought (19). This will probably be most prominent in temperate forest regions that have already been characterized as prone to drought stress, such as southern Europe. Drought-stricken forests are also more susceptible to opportunistic pests and fire (20). Together, these related effects can potentially change large areas of temperate forest ecosystems from carbon sinks to sources.
Benefits
Globally, based on both satellite and ground-based data, climatic changes seemed to have a generally positive impact on forest productivity since the middle of the 20th century, when water was not limiting (29).
Timber production in Europe
Climate change will probably increase timber production and reduce prices for wood products in Europe. For 2000–2050 a change of timber production in Europe is expected of -4 to +5%. For 2050–2100 an increase is expected of +2 to +13% (21).
Adaptation strategies
For approximately the last 15 years, the regional administrations in charge of forest management have encouraged the replacement of conifers such as spruce and Scots pine by other species better adapted to mild and rainy winters, e.g. Douglas fir and broad-leaved trees. Regulatory and financial incentives are used, in particular subsidies for planting in accordance with a guide to species adapted to the present climate (1).
The new Forest Code advocates a mixed-species, mixed-age forest, adapted to climate change and able to mitigate certain effects. Forestry practices must therefore try to favour the species best adapted to (present day) local conditions, which constitutes a first step towards adaptation to future changes (1).
In order to improve the resilience of the forest ecosystem, it is important to encourage complex forest structures, the maintenance of soil fertility, optimal management of water resources (enhance soil and groundwater recharge by maintaining good soil structure and limiting the water consumption of the ecosystem through our choice of species and forestry practices), the monitoring of density of game populations and correcting imbalances by means of amendments to situations requiring a response (1).
Adaptation strategies - Forest management measures in general
Near-nature forest management and a move away from monocultures toward mixed forest types, in terms of both species and age classes, are advocated. In addition, natural or imitated natural regeneration is indicated as a method of maintaining genetic diversity, and subsequently reducing vulnerability. For management against extreme disturbances, improvements in fire detection and suppression techniques are recommended, as well as methods for combating pests and diseases. It is reported that through stricter quarantine and sanitary management, the impact of insects and diseases can be minimized. The establishment of migration corridors between forest reserves may aid in the autonomous colonization and migration of species in response to climate change (26).
Adaptive management
The terms adaptation and adaptive management are often incorrectly used interchangeably. The former involves making adjustments in response to or in anticipation of climate change whereas the latter describes a management system that may be considered, in itself, to be an adaptation tactic (23). Adaptive management is a systematic process for continually improving management policies and practices by learning from the outcomes of operational programmes (24). It involves recognizing uncertainty and establishing methodologies to test hypotheses concerning those uncertainties; it uses management as a tool not only to change the system but to learn about the system (25).
Both the climate and forest ecosystems are constantly changing, and managers will need to adapt their strategies as the climate evolves over the long term. An option that might be appropriate today given expected changes over the next 20 years may no longer be appropriate in 20 years’ time. This will require a continuous programme of actions, monitoring and evaluation – the adaptive management approach described above (22).
There is a widespread assumption that the forest currently at a site is adapted to the current conditions, but this ignores the extent to which the climate has changed over the past 200–300 years, and the lag effects that occur in forests. As a result, replacement of a forest by one of the same composition may no longer be a suitable strategy (22).
Adaptation to climate change has started to be incorporated into all levels of governance, from forest management to international forest policy. Often these policies are not adopted solely in response to climate, and may occur in the absence of knowledge about longer-term climate change. They often serve more than one purpose, including food and fuel provision, shelter and minimizing erosion, as well as adapting to changing climatic conditions (26).
Socio-economic and political conditions have significant influences on vulnerability and adaptive capacity. Climate change projections are perceived by many forest managers as too uncertain to support long-term and potentially costly decisions that may be difficult to reverse. Similarly, uncertainty over future policy developments may also constrain action. Finance is a further barrier to implementing adaptation actions in the forest sector (27).
References
The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Belgium.
- Ministry for Social Affairs, Health and Environment (2009)
- Walter (1979), in: Fischlin (ed.) (2009)
- Melillo et al. (1993), in: Fischlin (ed.) (2009)
- Reich and Frelich (2002), in: Fischlin (ed.) (2009)
- Carrer and Urbinati (2006), in: Fischlin (ed.) (2009)
- Field et al. (2007b), in: Fischlin (ed.) (2009)
- Hyvönen et al. (2007); Magnani et al. (2007), both in: Fischlin (ed.) (2009)
- Marshall et al. (2008), in: Fischlin (ed.) (2009)
- Chmielewski and Rötzer (2001); Parmesan (2006), both in: Fischlin (ed.) (2009)
- Alcamo et al. (2007); Field et al. (2007b); Alo and Wang (2008), all in: Fischlin (ed.) (2009)
- Lucht et al. (2006); Scholze et al. (2006); Alo and Wang (2008), all in: Fischlin (ed.) (2009)
- Williams et al. (2000); Williams and Liebhold (2002); Logan and Powell (2001); Tran et al. (2007); Friedenberg et al. (2008), all in: Fischlin (ed.) (2009)
- Fischlin (ed.) (2009)
- Iverson and Prasad (2001); Ohlemüller et al. (2006); Fischlin et al. (2007); Golubyatnikov and Denisenko (2007), all in: Fischlin (ed.) (2009)
- Perry et al. (2008), in: Fischlin (ed.) (2009)
- Liski et al. (2002), in: Fischlin (ed.) (2009)
- Piao et al. (2008), in: Fischlin (ed.) (2009)
- Morales et al. (2007), in: Fischlin (ed.) (2009)
- Christensen et al. (2007); Fischlin et al. (2007); Meehl et al. (2007); Schneider et al. (2007), all in: Fischlin (ed.) (2009)
- Hanson and Weltzin (2000), in: Fischlin (ed.) (2009)
- Karjalainen et al. (2003); Nabuurs et al. (2002); Perez-Garcia et al. (2002); Sohngen et al. (2001), in: Osman-Elasha and Parrotta (2009)
- Innes (ed.) (2009)
- Ogden and Innes (2007), in: Innes (ed.) (2009)
- BCMOF (2006a), in: Innes (ed.) (2009)
- Holling (1978); Lee (1993, 2001), all in: Innes (ed.) (2009)
- Roberts (ed.) (2009)
- Keskitalo (2008), in: Roberts (ed.) (2009)
- Kirilenko and Sedjo (2007)
- Boisvenue et al. (2006)
- National Climate Commission Belgium (2010)